Python Data Science With GenAI
Elevate Your Career with Python Data Science & GenAI Mastery
Unlock the potential of Python in data science and generative AI with this comprehensive course. Delve into data analysis, visualization, and predictive modeling, powered by ML and NLP. Discover the creative possibilities of generative AI to produce innovative content. Elevate your skills and career in this dynamic and transformative learning journey.
-
Features of SharvilPro Learning:
1. Industry Experts as Trainers
2. Hands-on Learning Approach
3. Mock Interviews
4. Resume Preparation Support
5. Profile Building
6. Placement Assistance
7. Internship Opportunities with Certification
-
Data Science Careers: Unveiling the Spectrum of Roles
1. Data Scientist
2. Data Analyst
3. ML Engineer
4. BI Analyst:
5. Data Engineer
Course Curriculum
Mastering Python: Unveiling Data Science and Generative AI Secrets
Module 1: Python Basics
1. Introduction to Python
2.Variables
3.Operators
4. Conditional Statements
Module 2: Data Types in Python
1. Integers
2. Floats
3. Complex Numbers
4. Strings
5. Lists
6. Tuples
7. Sets and FrozenSets
8. Dictionaries
9. Booleans
Module 3: Loops in Python
1. For Loop
2. While Loop
Module 4: Functions
1. Python Functions
2. Types of Arguments
3. Recursive Functions
4. Lambda Functions
5. Built-in Functions
Module 5: Modules and Packages
1. OS Module (Operating System)
2. Glob Module
3. Shutil Module
4. Time Module
5. DateTime Module
6. Regular Expressions
7. Pytesseract
8. File Handling
9. Exception Handling
Module 6: Object-Oriented Programming (OOP) in Python
1. Inheritance
2. Encapsulation
3. Polymorphism
4. Abstraction
5. Iterator and Generator
6. Decorator
Module 7: Python Web Framework
1. Flask
Module 1: Preprocessing and Model Building
1. Numpy
2. Pandas
3. Scipy
4. Statsmodels
5. Sklearn
6. Nltk
7. Imblearn
8. Mlxtend
Module 2: Visualization
1. Matplotlib
2. Seaborn
3. Plotly (3D Plotting)
Module 3: NumPy (Numerical Python)
1. Introduction to Numpy
2. Datatypes of ndarrays
3. Dealing with ndarrays, copies, and views
4. Arithmetic operations
5. Indexing, slicing, splitting arrays
6. Shape manipulation
7. Stacking together different data
8. Statistics using Numpy
9. Linear algebraic operations
10. Logarithmic functions
Module 4: Pandas (Data Analysis)
1. DataFrame and Series
2. DataFrame operations
3. Data slicing, indexing
4. DataFrame functions
5. Reading files: csv, excel
6. Storing files in various formats
7. Useful DataFrame functions
8. Statistics using Pandas
9. Dealing with missing data
10. Operations over the data
11. Sorting DataFrame using values and index
12. GroupBy and Apply
13. Joins in Pandas
Module 5: Machine Learning Algorithms
1. Linear Regression
2. Logistic Regression
3. K-Nearest Neighbour
4. Decision Tree
5. Random Forest
6. AdaBoost
7. Support Vector Machine
8. Naive Bayes Classifier
9. Gradient Boost
10. Extreme Gradient Boost
11. K-Means Clustering
12. Principal Component Analysis
Module 6: Data Preprocessing
1. Handling of missing values
2. Handling of outliers
3. Encoding
4. Feature scaling
5. Binning
Module 7: Feature Selection
1. Filter Method
2. Wrapper Method
3. Embedded Method
Module 8: Hypothesis Testing
1. P-value
2. Z Test
3. T-Test
4. ANOVA
5. Chi-Square Test
Module 1: Deep Learning Fundamentals
1. What is Deep Learning? Why Deep Learning?
2. Deep Learning vs. Machine Learning
3. Types of Neural Networks and Their Applications
4. History of Perceptron
5. Why Perceptron Failed
Module 2: Basics of Neural Networks
1. Neural Network Basics
2. Building a Neural Network
3. Forward and Backward Propagation
4. Gradient Descent
Module 3: Advanced Optimization Techniques
1. Activation Functions
2. Sigmoid
3. Tanh
4. ReLU
5. Leaky ReLU
6. Softmax
7. P-ReLU
8. Softplus
Module 4: Activation Challenges with Activation Functions
1.Sigmoid Vanishing Gradient Problem
2. ReLU Dying Proble
3. Exploding Gradient
4. Advantages, Disadvantages, and Applications of Activation Functions
Module 5: Loss Functions
1. MSE, MAE, Huber Loss, Log Error
2. Binary Cross-Entropy
3. Categorical Cross-Entropy
4. Sparse Categorical Cross-Entropy
Module 6: Regularization Techniques
1. Dropout Ratio
2. Overfitting Problem
Module 7: Implementing Artificial Neural Networks (ANN)
Module 8: Convolutional Neural Network (CNN)
1. CNN Fundamentals
2. CNN Architecture
3. Convolution Layer
4. Data Augmentation
5. Implementing CNNs
Module 1: Understanding Databases and SQL
1. What is a Database and SQL?
2. Properties of Databases and SQL
3. Use of Databases
4. Types of Commands in SQL
Module 2: Data Manipulation in SQL
1. DDL Commands and Implementation
2. DML Commands and Implementation
Module 3: SQL Query Clauses
1. Where Clause
2. Order By Clause
3. Distinct Clause
4. Limit Clause
5. Group By Clause
6. Having Clause
Module 4: Advanced SQL Concepts
1. Subqueries and Types
2. NOT NULL Constraints
3. UNIQUE Constraints
4. PRIMARY KEY Constraints
5. FOREIGN KEY Constraints
Module 5: SQL Joins
1. Inner Join
2. Left Join
3. Right Join
4. Self Join
5. Cross Join
6. Full Join
Module 6: Introduction to MongoDB (NoSQL Database)
1. Create Database in MongoDB
2. Create Collection in MongoDB
3.Basic Database Operations in MongoDB
Module 1: NLP Basics
1. Basic Terminology of NLP
2. NLP Pipeline
Module 2: Exploratory Data Analysis (EDA) in NLP
1. N-gram Analysis
2. Wordcloud Generation
Module 3:Keyphrase Extraction Algorithms
1. YAKE
2. RAKE
3. PageRank
Module 4: Preprocessing Techniques
1. Tokenization
2. Normalization
3. Stopwords Removal
4. Autocorrection
5. Language Detection and Translation with TextBlob,Google Translate API
Module 5: Text Cleaning
1. Stemming and Lemmatization
2. Removing Emojis
3. Handling Accented Characters
4. Contraction Mapping
Module 6: Feature Engineering
1. Count Vectorizer
2. TF-IDF (Term Frequency-Inverse Document Frequency)
3. Word2Vec
4. Doc2Vec
Module 7: Converting Unlabeled Data into Labeled Data
1. Clustering
2. Topic Modelling
Module 8: Sentiment Analysis
1. Root Cause Analysis
2. Document Classification
Module 1: Introduction to AWS and Deployment
1. Understanding Deployment
2. Need of AWS
3. Free Tier Account Creation
Module 2: Introduction to AWS Home
1. Regions and Availability Zones
2. Billing Dashboard
Module 3: Working with EC2 Instances
1. Understanding EC2
2. Creating and Launching EC2 Instances
3. Deployment of Project on EC2
4. Stopping and Terminating EC2 Instances
Module 4: Introduction to AWS Services
1. Overview of Various AWS Services (Theory)
Module 5: AWS Sagemaker
1. Creating a Notebook Instance
2. Building Models using Jupyter Sample Notebooks
3. Creating and Deleting IAM Roles
4. Deleting Sagemaker Endpoints
Module 6: AWS S3 (Simple Storage Service)
1. Introduction and Key Concepts
2. Creating Buckets and Uploading Objects
3. Integrating S3 with Sagemaker
4. Emptying and Deleting Buckets
Module 1:Introduction to Generative AI
1. What is Generative AI?
2. Why Do We Need Generative Models?
3. Understanding Generative Models and Their Importance
4. Generative AI vs. Discriminative Models
5. Recent Advancements and Research in Generative AI
6. Generative AI Project Lifecycle
7. Key Applications of Generative Models
Module 2: Guide to OpenAI and Its Ready-to-Use Models with Applications
1. Introduction to OpenAI
2. Understanding OpenAI API and Generating an API Key
3. Installing the OpenAI Package
4. Experimenting in the OpenAI Playground
5. Setting Up Your Local Development Environment
6. Exploring Different Templates for Prompting
7. Practical Implementation of OpenAI Models: GPT-3.5 Turbo, DALL-E 2, Whisper, CLIP, Davinci, and GPT-4
8. Implementing OpenAI Embeddings and Moderation
9. Using the Chat Completion API, Function Calling, and Completion API
10. Managing Tokens in OpenAI
11. Strategies for Optimizing Results
12. Image Generation with OpenAI LLM Models
13. Speech-to-Text with OpenAI
14. Using Moderation to Ensure Content Compliance with OpenAI
15. Understanding Rate Limits and Error Codes in OpenAI
16. Connecting ChatGPT to Third-Party Applications with OpenAI Plugins
17. Fine-Tuning OpenAI Models with Custom Data
Module 3: Mastering Prompt Engineering with OpenAI
1. Ask-Before-Answer Prompting
2. Perspective-Based Prompting
3. Contextual Prompting
4. Emotion-Driven Prompting
5. Laddering Technique in Prompting
6. Using ChatGPT for Effective Prompting
7. Identifying Missing Information
8. Self-Evaluative Prompting
9. ChatGPT-Powered Problem Splitting
10. Role Reversal in Prompting
11. Exploring Additional Prompts & Finding Inspiration
12. Advanced Prompts: CAN & DAN
Module 4: Vector Databases with Python for LLM Use Cases
1. Introduction to Vector Databases
2. Foundation of Vector Databases
3. Use Cases for Vector Databases
4. Text Embedding Techniques
5. Vector Similarity Search
6. Using SQLite as a Database
7. Storing and Retrieving Vector Data in SQLite
8. Chromadb Local Vector Database: Part 1 - Setup and Data Insertion
9. Querying Vector Data
10. Fetching Data by Vector ID
11. Database Operations: Create, Update, Retrieve, Delete, Insert, and Update
12. Applications in Semantic Search
13. Building an AI Chat Agent with LangChain and OpenAI
14. Weaviate Vector Database
15. Pinecone Vector Database
Module 5: Hands-On with LangChain
1. Introduction to LangChain
2. How LangChain Works
3. Installation and Setup of LangChain in Local Environment
4. Hello World of LangChain Application: Chaining a Simple Prompt
5. Components of LangChain: Schema, Model I/O, Prompts, Indexes, Memory, Chains, Agents, Callbacks
6. Understanding Prompts, Language Models, and Output Parsers
7. Concepts of Async API, Fake LLM Human Input, and LLM Caching
8. Implementing Chat Models with Human Input, Chain, Prompt, and Streaming
9. Implementing Output Parsers: JSON Parser, XML Parser, and List Parser
10. Retrieval Implementation: Document Loader, Document Transformer, Text Embedding, and Vector Store
11. Implementing Memory with Chat Messages, Conversational Knowledge Base, and Vector Store
12. Text Summarization with LangChain
13. Question Answering with LangChain
14. Building a Chatbot with LangChain
15. LangChain Streaming
16. Embeddings and Vector Data Stores in LangChain
17. Understanding PromptTemplate, LLM, and OutputParser
18. LangChain Expression Language
19. Binding Runtime Arguments
20. Configurable Alternatives
21. Adding Fallbacks
22. Running Arbitrary Functions
23. Using RunnableParallel and RunnableMap
24. Routing Between Multiple Runnables
25. Document Loaders
26. Analyzing CSV, PDF, and JSON Files Using LangChain
27. Prompt Templating and Prompt Management
28. Retrieval-Augmented Generation Chain
29. Working with Multiple Chains
30. Querying a SQL Database
31. Adding Moderation to Your LLM Application
32. Using Hugging Face Models with LangChain
33. Fine-Tuning Falcon 7B on a Custom Dataset
34. Mistral 7B: Fine-Tuning and Inference for Custom Use Cases
35. LangChain with Google PaLM2 Model
36. LangChain with Facebook LLaMA2 Model37. Building a LangChain Webapp with Streamlit and Flask
Module 6: Practical Guide to LlamaIndex with LLMs
1. Introduction to LlamaIndex
2. Differences Between LangChain and LlamaIndex
3. Differences Between LLaMA and LlamaIndex
4. Setting Up LlamaIndex in a Local Environment
5. Using LLMs with LlamaIndex
6. Exploring Llamahub
7. Connecting with External Data Sources
8. Understanding In-Context Learning and Fine-Tuning
9. The Importance of Indexing in LLM Applications
10. Persisting Indexes
11. Indexing Your Data
12. Creating Document Objects
13. Various Document Loaders
14. Verifying the Sources of Responses
15. Connecting with Different Document Types (CSV, TXT, PDF, etc.)
16. Document Management
17. Recursive File Processing from Directory and Subdirectory
18. Building Applications with LlamaIndex
19. Customizing LLM Models in Applications
20. Integration with Flask and Streamlit Endpoints
21. Enabling Streaming Responses
22. Chat Engine: Condense Mode
23. Chat Engine: React Mode
24. Customizing Prompts
25. Using Vector Databases like ChromaDB and Weaviate with LlamaIndex
26. Token Prediction and Cost Analysis
27. Integrations with OpenAI and Hugging Face
1. Hands-on projects applying Data Science and NLP techniques.
2. Real-world case studies and problem-solving tasks.
Project#1: Medical Chatbot Project with Llama 2, Pinecone, LangChain & Deployment AWS
Project#2: Research Paper Summarizer with LangChain, OpenAI, Streamlit and Weviate & Deployment AWS
Project#3: Developing a High-Quality Text-to-Speech System with Advanced NLP Techniques
Mark Jukarberg
UX Design LeadDorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua Quis ipsum suspendisse ultrices gravida. Risus commodo viverra maecenas accumsan.